
See the following output:
#include <stdio.h>
int main()
{
 int *ptr, q;
 q = 50;
 /* address of q is assigned to ptr */
 ptr = &q;
 /* display q's value using ptr variable */
 printf("%d", *ptr);
 return 0;
}

Output: 50
*p vs **p vs ***p meaning:
*p: *p is a pointer to a variable, as shown below. It is also called single pointer. The single

pointer has two purposes: to create an array and to allow a function to change its contents
(pass by reference).

**p: **p is a pointer to a pointer variable, also called double pointer. It is a form of multiple
indirection, or a chain of pointers. When we define a pointer to a pointer, the first pointer
contains the address of the second pointer, which points to the loca
actual value as shown below.

***p: ***p is a pointer to a double pointer, rather a pointer to a pointer to a pointer variable, as
shown below. It is mostly called triple pointer. It is an even higher level of multiple
indirection or pointer chaining. A triple pointer is used to traverse an array of pointers.

Example of Pointer demonstrating the use of & and *
int main()
{
 /* Pointer of integer type, this can hold the
 * address of a integer type variable.
 */
 int *p;

 int var = 10;

 /* Assigning the address of variable var to the pointer
 * p. The p can hold the address of var because var is
 * an integer type variable.
 */
 p= &var;
 printf("Value of variable var is: %d", var);
 printf("\nValue of variable var is: %d", *p);
 printf("\nAddress of variable var is: %p", &var);
 printf("\nAddress of variable var is: %p", p);
 printf("\nAddress of pointer p is: %p", &p);
 return 0;
}

Pointer
IT Batch 400
Full Lecture

See the following output:
#include <stdio.h>

int *ptr, q;

/* address of q is assigned to ptr */

/* display q's value using ptr variable */
printf("%d", *ptr);

*p vs **p vs ***p meaning:
*p is a pointer to a variable, as shown below. It is also called single pointer. The single

pointer has two purposes: to create an array and to allow a function to change its contents
(pass by reference).

**p is a pointer to a pointer variable, also called double pointer. It is a form of multiple
indirection, or a chain of pointers. When we define a pointer to a pointer, the first pointer
contains the address of the second pointer, which points to the loca
actual value as shown below.

***p is a pointer to a double pointer, rather a pointer to a pointer to a pointer variable, as
shown below. It is mostly called triple pointer. It is an even higher level of multiple

r pointer chaining. A triple pointer is used to traverse an array of pointers.

Example of Pointer demonstrating the use of & and *

/* Pointer of integer type, this can hold the
* address of a integer type variable.

/* Assigning the address of variable var to the pointer
* p. The p can hold the address of var because var is
* an integer type variable.

printf("Value of variable var is: %d", var);
variable var is: %d", *p);

nAddress of variable var is: %p", &var);
nAddress of variable var is: %p", p);
nAddress of pointer p is: %p", &p);

/* address of q is assigned to ptr */

/* display q's value using ptr variable */

*p is a pointer to a variable, as shown below. It is also called single pointer. The single
pointer has two purposes: to create an array and to allow a function to change its contents

**p is a pointer to a pointer variable, also called double pointer. It is a form of multiple

indirection, or a chain of pointers. When we define a pointer to a pointer, the first pointer
contains the address of the second pointer, which points to the location that contains the

***p is a pointer to a double pointer, rather a pointer to a pointer to a pointer variable, as

shown below. It is mostly called triple pointer. It is an even higher level of multiple
r pointer chaining. A triple pointer is used to traverse an array of pointers.

*p is a pointer to a variable, as shown below. It is also called single pointer. The single
pointer has two purposes: to create an array and to allow a function to change its contents

**p is a pointer to a pointer variable, also called double pointer. It is a form of multiple
indirection, or a chain of pointers. When we define a pointer to a pointer, the first pointer

tion that contains the

***p is a pointer to a double pointer, rather a pointer to a pointer to a pointer variable, as
shown below. It is mostly called triple pointer. It is an even higher level of multiple

Output:
Value of variable var is: 10
Value of variable var is: 10
Address of variable var is: 0x7fff5ed98c4c
Address of variable var is: 0x7fff5ed98c4c
Address of pointer p is: 0x7fff5ed98c50

See the following Example:
 int main()
 {
 int var;
 int *p,**pp,***ppp;
 var =100;
 p=&var;
 pp=&p;
 ppp=&pp;
 printf("value at var= %d\n",var);
 printf("value available at *p= %d\n",*p);
 printf("value available at **p= %d\n",**pp);
 printf("value available at ***p= %d\n",***ppp);
 return 0;
 }
Output:

value at var= 100
value available at *p= 100
value available at **p= 100
value available at ***p= 100

Understand Pointer how it works:
int main () {
int var = 20; /* actual variable declaration */
int *ip; /* pointer variable declaration */
ip = &var; /* store address of var in pointer variable*/
printf("Address of var variable: %x\n", &var);
 /* address stored in pointer variable */
printf("Address stored in ip variable: %x\n", ip);
 /* access the value using the pointer */
printf("Value of *ip variable: %d\n", *ip);
return 0;
}

Output: Address of var variable: bffd8b3c
Address stored in ip variable: bffd8b3c
Value of *ip variable: 20

Pointer to Pointer
 We know, pointer is a variable that contains address of another variable. Now this variable

address might be stored in another pointer. Thus, we now have a pointer that contains address
of another pointer, known as pointer to pointer.

Example 3:
main ()

{
int i = 3, *p, **q;
p = &i;
q=&p;
printf("\n Address of i = %u", &i);
printf("\n Address of i = %u", p);
printf("\n Address of i = %u", *q);
printf("\n Address of p= %u", &p);
printf("\n Address of p= %u", q);
printf("\n Address of q = %u", &q);
printf("\n value of i= %d", i);
printf("\n value of i= %d", *(&i));
printf("\n value of i= %d", *p);
printf("\n value of i= %d", **q);
}

If the memory map is **q=20555 , *p=20122 and i=2000
Then the output is:
Address of i = 2000
Address of i = 2000
Address of i = 2000
Address of p= 20122
Address of p = 20122
Address of q = 20555
Value of i = 3
Value of i=3
Value of i=3
Value of i=3

Example 1:
void printxy(int x, int y)
{ int *ptr;
 x=0;
ptr=&x;
y=*ptr;
*ptr=1;
printf("%d",%d",x,y);
}

Example2:
#include<stdio.h>

void f(int *p, int*q)
 {
p=q;
*p=2;
}

int i=0, j=1;
 int main()
{
f(&i, &j);
 printf("%d%d\n",i,j);
 return 0;
 }

NULL Pointers

 It is always a good practice to assign a NULL value to a pointer variable in case you do not
have an exact address to be assigned. This is done at the time of variable declaration. A
pointer that is assigned NULL is called a null pointer.

 The NULL pointer is a constant with a value of zero defined in several standard libraries.
Consider the following program −

 int main ()
 {
 int *ptr = NULL;
 printf ("The value of ptr is : %x\n", ptr);
 return 0;
 }
Output: The value of ptr is 0
See the following example
 int main()
 {
 int val[3] = { 5, 10, 20 };
 int *ptr;
 ptr = val ; //assigning all array value to ptr
 printf("Elements of the array are: ");
 printf("%d %d %d ", ptr[0], ptr[1], ptr[2]);
 ++*ptr; // increment the first value of ptr
 printf(" %d %d %d ", ptr[0], ptr[1], ptr[2]);
 printf(" %d",*(++ptr)); // inctrement the index
 return 0;

 }
Output: 5 10 20 6 10 20 10
 Here ‘val’ array is assign to ptr. Then ptr point to the array. Print 5 10 20 . Now, ++*ptr

means increment the value of ptr *ptr is the first value of array which is 5 ,So,++*ptr=++5=6.
So, next output is 6 10 20. And the final line ++ptr means increment the index. Now ptr
goes to index 1 which is 10. Print 10.

 In most of the operating systems, programs are not permitted to access memory at address 0
because that memory is reserved by the operating system. However, the memory address 0
has special significance; it signals that the pointer is not intended to point to an accessible
memory location. But by convention, if a pointer contains the null (zero) value, it is assumed
to point to nothing.

 if(ptr) /* succeeds if p is not null */
 if(!ptr) /* succeeds if p is null */

 What is the correct output of the following C program? [Com 6 bank AP-2021]
int array[] = {6,7,8,9,0,1,2,3,4,5,6};
*p=array+5;
printf(“%d\n”, p[1]);

a) 1 b) 2 c) 3 d) Compile Error

** it is clear that &x[0] is equivalent to x. And, x[0] is equivalent to *x.
Similarly,

 &x[1] is equivalent to x+1 and x[1] is equivalent to *(x+1).
 &x[2] is equivalent to x+2 and x[2] is equivalent to *(x+2).

Pointer To String

We know that a string is a sequence of characters which we save in an array. And in C
programming language the \0 null character marks the end of a string.

Creating a string

In the following example we are creating a string str using char character array of size 6.

Creating a pointer for the string

The variable name of the string str holds the address of the first element of the array i.e., it points
at the starting memory address.

So, we can create a character pointer ptr and store the address of the string str variable in it. This
way, ptr will point at the string str.

char *ptr = str;

Array of strings

We can create a two dimensional array and save multiple strings in it.

For example, in the given code we are storing 4 cities name in a string array city.

char city[4][12] = {

 "Chennai",

 "Kolkata",

 "Mumbai",

 "New Delhi"

};

Example of String and array of character:
int main(void) {
char name[] = "Harry Potter";
printf("%s", name); // Output: Harry Potter
printf("%s", name+1); // Output: arry Potter
printf("%c", *name); // Output: H
printf("%c", *(name+7)); // Output: o
char *namePtr;
namePtr = name;
printf("%c", *namePtr); // Output: H
printf("%c", *(namePtr+1)); // Output: a
printf("%c", *(namePtr+7)); // Output: o

Practices Problem: 1

char c[]="GATE2011';
char *p=c;
printf("%s",p+p[3]-p[1]);
Ans:
// p[3] is 'E' and p[1] is 'A'.
// p[3] - p[1] = ASCII value of 'E' - ASCII value of 'A' = 4
// So the expression p + p[3] - p[1] becomes p + 4 which is
// base address of string "2011"
Or let the address of p is 2000 so, 2000+E-A=2000+4=2004= p[4]=2

Previous year question:
1. Which of the following is correct to initial array in C? [Com. 6 bank-Ap-2021]
 a) int array = (1,2,3,4,5) b) int array() = {1,2,3,4,5}
 c) int array() = (1,2,3,4,5) d) int array[5]={1,2,3,4,5} Ans:d
2. What is the access methodology in arrays? [Com. 6 bank-Ap-2021]
 a) Sequential b) Random c) Relational d) Stochastic Ans:b
3. What is the output of the following program: [Competition commision(P)-2019]

int main ()
{
char *a[2] = { "hello", "hi" };
printf ("%s", *(a + 1));
return 0;
}

Output: hi

4. What is the output of following code:[Competition commision(P)-2019]
int main ()
{
char s[32] = "niksat";
char t[32] = "";
strrev (s); //taskin
strcpy (t, s);
strcat (t, " so so ");
puts (t);
printf ("%d\n", strcmp ("taskvar", t));
return 0;
}

Output: taskin so so

 13

Exercise

include <stdio.h>
void fun(int *ptr)
{
 *ptr = 30;
}

int main()
{
int y = 20;
fun(&y);
printf("%d", y);

return 0;
}
Answer: (B)
Explanation: The function fun() expects a pointer ptr to an integer (or an address of an
integer). It modifies the value at the address ptr. The dereference operator * is used to access
the value at an address. In the statement ‘*ptr = 30’, value at address ptr is changed to 30. The
address operator & is used to get the address of a variable of any data type. In the function call
statement ‘fun(&y)’, address of y is passed so that y can be modified using its address.

#include <stdio.h>

int main()
{
 int *ptr;
 int x;

 ptr = &x;
 *ptr = 0;

 printf(" x = %d\n", x);
 printf(" *ptr = %d\n", *ptr);

 *ptr += 5;
 printf(" x = %d\n", x);

 printf(" *ptr = %d\n", *ptr);

 (*ptr)++;
 printf(" x = %d\n", x);
 printf(" *ptr = %d\n", *ptr);

 return 0;
}

